
CyberTracker is a universal data collection application which runs on mobile devices. One

of the supported formats is XlsForm.

XlsForm has an extension mechanism which allows users to activate CyberTracker

behavior without affecting the semantics of the form.

This reference manual descibes the CyberTracker extensions. Note that XlsForms are

simply an Excel files and the extensions are columns in the worksheets.

There are three kinds of customization:

Views, e.g. grid styles for single and multi-select lists

Behaviors, e.g. GPS track logs and save targets

Developer code, e.g. a new widget

CyberTracker supports ODK Central, KoBoToolbox and Survey123.

The CyberTracker extensions do not affect the semantics of the form and are transparent

to backends. It is possible to use the same form to collect data across platforms (web,

ODKCollect, etc) with a single form. In this scenario, CyberTracker would be chosen as a

way to meet the needs of specific field workers.

While CyberTracker supports most of the commonly used XlsForm features, it is not as

mature as the existing data collection tools like ODK Collect, Kobo Collect and Survey123.

Users should prefer to use those tools for mission critical projects.

CyberTracker XlsForm Reference Manual

Overview

•

•

•

Backend

Limitations

https://xlsform.org/
https://xlsform.org/en/#advanced-use-and-extensibility
https://getodk.org/
https://kobotoolbox.org/
https://survey123.arcgis.com/

TABLE OF CONTENTS

Initial setup

namespace (required)

version (recommended)

Settings

immersive

wizardMode

summary

colors

icon, iconDark and subtitle

offlineMapUrl

esriLocationServiceUrl

sendLocationInterval

Header

color and colorDark

text

topText

button

homeIcon

cancelIcon

confirmIcon

hideHome

hidden

qml

qmlBase64

qmlFile

Content

color and colorDark

frameWidth

style

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

padding

columns

lines

border

borderWidth

fontSize

fontBold

itemHeight

qml

qmlBase64

qmlFile

Footer

buttons

home button

back button

next button

save button

nextOrSave button

index button

options button

map button

Custom button icons

color and colorDark

buttonColor and buttonColorDark

buttonScale

hidden

qml

qmlBase64

qmlFile

Save

snapLocation

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

targets

track

Offline maps

What is an offline map?

Packages

Package installation

Layer order and opacity

Sharing

Zoom to layer

Supported formats

WMS layers

Miscellaneous

fixCount

track file format

Developers

Introduction

Setup

Page layout

recordUid and fieldUid

Setting form values

Frequently Asked Questions

Which backends support XlsForm?

Are CyberTracker extensions visible to other tools?

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

The following columns on the settings sheet are needed to begin using the CyberTracker

extensions.

The ct namespace tells other XlsForm tools to ignore columns starting with bind::ct: .

title version namespaces

My Form 2022101001 ct="http://cybertracker.org/xforms"

◄ ► survey choices settings +

The version field is used to track form versions over time. While not strictly required, it is a

best practice to keep this field up to date. The XlsForm specification recommends the

convention of ‘yyyymmddrr’. For example, 2022021501 is the 1st revision from Feb 15th,

2022.

Initial setup

namespace (required)

version (recommended)

https://xlsform.org/#settings-worksheet

Setting this to yes causes the UI to use the wizard exclusively, i.e. there is no Home page.

Default is no .

title bind::ct:immersive

My Form yes

◄ ► survey choices settings +

In the table below, the user context is always within a sighting and each page typically

holds one question. Pressing the options button (highlighted in the first image) navigates

to a new page which shows the current sighting on one tab and all sightings on the other.

The user can edit previous sightings, but when editing is complete, the wizard will revert to

the original sighting.

If the immersive column is missing or set to no , then the UI reverts to non-immersive
mode. In this case, there is a Home page which shows all sightings. The user returns to

this page after saving a sighting.

Settings

immersive

wizardMode

title bind::ct:wizardMode

My Form yes

◄ ► survey choices settings +

If wizardMode is set to no , then all questions show on a single page. This mode is

recommended when wanting to show all sighting data at once and is the most

conventional.

If wizardMode is set to yes , then each question will appear on its own page with Back and

Next toolbar buttons to navigate between questions. The user will still return to the Home

page between sightings. wizardMode appears on the Settings page as Page mode.

The summary attribute specifies which fields to use as the summary of a sighting on the

Home page. For example:

type name label

text f_initial_text Initial note

select_one animal f_animal Animal

select_multiple behavior f_behavior Behavior

text f_final_text Final note

◄ ► survey choices settings +

The following setting will ensure that the summary only uses the f_animal and f_behavior

questions.

title bind::ct:summary

My Form f_animal f_behavior

◄ ► survey choices settings +

summary

colors

The colors attribute specifies the color scheme used on the form. It follows the Material

Design system:

title bind::ct:colors.primary bind::ct:colors.accent

My Form #6200EE green

◄ ► survey choices settings +

The following color fields are supported:

primary & primaryDark

accent & accentDark

foreground & foregroundDark

background & backgroundDark

Colors suffixed with ‘dark’ will be used when dark mode is activated. If dark colors are not

provided, then ‘primary’ and ‘accent’ colors will be used, but ‘foreground’ and

‘background’ colors will be ignored.

Colors can also be provided as a JSON object:

title bind::ct:colors

My Form { "primary": "#6200EE", "accent": "green" }

◄ ► survey choices settings +

•

•

•

•

https://m2.material.io/design/color/the-color-system.html

The icon attribute specifies the icon used to display the project. iconDark is optional and

will used when dark mode is enabled.

The subtitle attribute specifies the text just below the form name.

title bind::ct:icon bind::ct:subtitle

My Form gorilla.png Custom subtitle

◄ ► survey choices settings +

The icon image should be added to the form as an attached media file. In KoBoToolbox,

this is done under the form settings option:

icon, iconDark and subtitle

The offlineMapUrl attribute specifies a url to a downloadable zip file containing map

layers. Offline maps can be added manually using the mobile app, but this provides a way

to specify them with the form. The map will be downloaded, installed and updated as part

of the form.

title bind::ct:offlineMapUrl

My Form https://cybertrackerwiki.org/assets/xlsform/offlinemap.zip

◄ ► survey choices settings +

See the section on Offline maps for more information.

When using Survey123, CyberTracker supports uploading locations and tracks to a hosted

feature service. In this case, the feature service is specified in the

offlineMapUrl

esriLocationServiceUrl

http://127.0.0.1:4000/xlsform/reference-manual/maps

bind::ct:esriLocationServiceUrl column:

title bind::ct:esriLocationServiceUrl

My Form https://services6.arcgis.com/.../FeatureServer

◄ ► survey choices settings +

The feature service should be created using the CyberTracker Desktop Simulator (see

Download page). There is an option off the Tools menu called Create ArcGIS location

service. This tool will automatically create and configure a hosted service which is

compatible with CyberTracker:

After clicking Start, the tool will display the following:

http://127.0.0.1:4000/xlsform/download

The feature service contains three layers: Tracks (point layer), Last Known Locations

(point layer) and Track Lines (Polyline layer).

If this service is not specified, then tracks are placed in a file type question of the

sighting. See Tracks.

If using Survey123, CyberTracker can send the current location at regular intervals -

separately from tracks. The value is in seconds and is user configurable via the form

Settings menu on the device. This specifies the default value.

bind::ct:esriLocationServiceUrl must be configured.

title bind::ct:sendLocationInterval

My Form 30

◄ ► survey choices settings +

sendLocationInterval

http://127.0.0.1:4000/xlsform/reference-manual/6#track

The header object supports custom header attributes. If no header object is specified,

then the default header is used. By default, the header title is taken from the question

label.

By default, the header background color is taken from the settings sheet. However, it is

possible to override it on an individual page.

type bind::ct:header.color bind::ct:header.colorDark

select_one... #ff0000 #800000

◄ ► survey choices settings +

Custom header text.

type name bind::ct:header.text

select_one animal Animal Custom question text

Header

color and colorDark

text

◄ ► survey choices settings +

Custom smaller text above main title.

type name bind::ct:header.topText

select_one animal animal Custom top text

◄ ► survey choices settings +

topText

Type of the button in the top-right corner. Valid values are:

empty - by default no button is shown

track - the current state of the GPS track system

battery - the current state and level of the battery

type name bind::ct:header.button

select_one animal animal track

◄ ► survey choices settings +

Tapping on the button will provide more information, e.g. the track frequency or the

battery level.

button

•

•

•

Override the home icon with a custom icon.

type name bind::ct:header.homeIcon

select_one animal animal my_home_icon.svg

◄ ► survey choices settings +

homeIcon

cancelIcon

When editing a sighting in immersive mode, the system puts a Cancel button in the top left

corner. Clicking this button will discard any edits. This property overrides the default icon

used.

type name bind::ct:header.cancelIcon

select_one animal animal my_edit_cancel_icon.svg

◄ ► survey choices settings +

When editing a sighting in immersive mode, the system puts a Confirm button in the top

right corner. Clicking this button will accept edits made to the sighting. This property

overrides the default icon used.

type name bind::ct:header.confirmIcon

select_one animal animal my_edit_confirm_icon.svg

◄ ► survey choices settings +

confirmIcon

If yes then the home button is hidden. Default is no .

type name bind::ct:header.hideHome

select_one animal animal yes

◄ ► survey choices settings +

If yes then the header is hidden. Default is no .

type name bind::ct:header.hidden

select_one animal animal no

◄ ► survey choices settings +

hideHome

hidden

A QML fragment to use instead of the built-in header. See Developer section. For example:

type name bind::ct:header.qml

select_one animal animal qml fragment

◄ ► survey choices settings +

To set the header to a blue rectangle, replace qml fragment above with the following:

qml

import QtQuick 2.15

Rectangle {
 color: "blue"
 height: 64
}

https://wikipedia.org/wiki/QML

Base64 encoded QML (see qml above).

Name of a QML file which exists alongside other project files. This is not supported on

ODK or KoBoToolbox, but can be used in Survey123.

qmlBase64

qmlFile

The content section is the middle part of the screen between the header and footer. By

default it automatically selects a control for the question type, e.g. a date selector for a

date question. By specifying a custom content object, more styles are available. This is

especially useful for customizing lists.

By default, the content background color is taken from the settings sheet. However, it is

possible to override it on an individual page.

type bind::ct:content.color bind::ct:content.colorDark

select_one... #a0b0c0 #102030

◄ ► survey choices settings +

Frame width around the content area of the page. Default is 16.

type name bind::ct:content.frameWidth

Content

color and colorDark

frameWidth

select_one animal animal 0

◄ ► survey choices settings +

In this case, frameWidth was set to 0 in the second image.

The visual appearance of the question.

type name bind::ct:content.style

select_one animal animal IconOnly

◄ ► survey choices settings +

For select_one questions

(not specified)

IconOnly

TextOnly

TextBesideIcon

TextUnderIcon

style

•

•

•

•

•

For select_multiple questions:

(not specified)

IconInlay

IconOnly

TextOnly

TextBesideIcon

•

•

•

•

•

For number list groups:

(not specified)

IconOnly

TextOnly

TextBesideIcon

Number lists are a set of questions inside a group . The appearance column must be set to

field-list to force all group questions to appear on the same page:

type name label bind::ct:content.style appearance

begin group numberlist Number list IconOnly field-list

integer number1 Number 1

•

•

•

•

integer number2 Number 2

integer number3 Number 3

integer number4 Number 3

integer number5 Number 5

end group

◄ ► survey choices settings +

For range questions:

type name parameters bind::ct:content.style bind::ct:content.columns

range animal_count
start=1 end=100
step=1

Grid 5

◄ ► survey choices settings +

For a fixed number of image questions:

type name label bind::ct:content.style appearance

begin group photogroup Group photos Grid field-list

image image1 Photo

image image2 Photo 2

image image3 Photo 3

image image4 Photo 4

end group

◄ ► survey choices settings +

For a dynamic number of image questions:

type name label bind::ct:content.style

begin repeat photogroup Repeat photos Grid

image image Photo

end repeat

◄ ► survey choices settings +

Ignored for other question types.

padding

The padding space between grid items. Requires style to be set.

type name bind::ct:content.padding

select_one animal animal 8

◄ ► survey choices settings +

Padding values are 0 , 4 and 8 .

Number of columns for grids. Requires style to be set. Defaults to 2.

type name bind::ct:content.style bind::ct:content.columns

select_one animal animal Grid 4

◄ ► survey choices settings +

For example, column values below are 3 , 5 and 10 .

columns

Show lines between cells for grids. Requires style to be set. Defaults to true.

type name bind::ct:content.style bind::ct:content.lines

select_one animal animal IconOnly no

◄ ► survey choices settings +

lines value below is yes and no .

lines

Show border around the outside of a grid. Requires style to be set. Defaults to no if

frameWidth is 0, yes otherwise.

type name bind::ct:content.style bind::ct:content.border

select_one animal animal IconOnly yes

◄ ► survey choices settings +

Border value is yes and no .

Border width for grid lines. Requires style to be set. Defaults to 2.

type name bind::ct:content.style bind::ct:content.borderWidth

select_one animal animal IconOnly 2

◄ ► survey choices settings +

borderWidth value is 2 and 4 .

border

borderWidth

Size text font size. Requires style to be set. Defaults to 16. Note that the font is subject to

scaling according to the Font size in the main Settings page.

type name bind::ct:content.style bind::ct:content.fontSize

select_one animal animal IconOnly 14

◄ ► survey choices settings +

fontSize values are 10 , 14 and 18 .

fontSize

Set font to bold. Requires style to be set. Defaults to false.

type name bind::ct:content.style bind::ct:content.fontBold

select_one animal animal IconOnly yes

◄ ► survey choices settings +

Set height of individual items. Requires style to be set. Defaults to 48.

type name bind::ct:content.style bind::ct:content.itemHeight

select_one animal animal IconOnly 48

◄ ► survey choices settings +

itemHeight values are 48 , 64 and 128 .

A QML fragment to use instead of the built-in content. See Developer section. For

example:

type name bind::ct:content.qml

fontBold

itemHeight

qml

https://wikipedia.org/wiki/QML

integer animal_count qml fragment

◄ ► survey choices settings +

To set the content to a blue rectangle, replace qml fragment above with the following:

In the example, the content is blue, then changes to red when the button is clicked.

Base64 encoded QML (see qml above).

Name of a QML file which exists alongside other project files. This is not supported on

import QtQuick 2.15
import QtQuick.Controls 2.15

Rectangle {
 color: "blue"
 Button {
 anchors.centerIn: parent
 text: "Click me"
 onClicked: parent.color = "red"
 }
}

qmlBase64

qmlFile

ODK or KoBoToolbox, but can be used in Survey123.

The footer object supports custom control buttons, e.g. home, back, next, save, etc. If no

footer object is specified, then the default control is used.

buttons is text which specifies which buttons should be shown on the footer toolbar.

type name bind::ct:footer.buttons

select_one animal back next index save map

◄ ► survey choices settings +

The home button returns to the Home page. In immersive mode, this returns to the Projects

page, otherwise it returns to the project home page.

The back button navigates to the prior question on the form. If the wizard is at the start of

the form, the back button is hidden.

Footer

buttons

home button

back button

The next button navigates to the next question on the form. If there is no next question,

then the next button is hidden.

The save button will attempt to save the current sighting. If the sighting has invalid data,

then the Index page will be shown with invalid fields highlighted.

The nextOrSave button will show as a next button unless there are no more questions, in

which case it will become a save button.

The index button displays a list of all the form questions. Selecting a question will navigate

the wizard to it directly. A jump-to-last button on the top right of the header will jump to

the next required question. If all required questions are filled in, then it jumps to the last

question.

The options button is only available in immersive mode. In non-immersive mode, it

becomes the index button (see above).

next button

save button

nextOrSave button

index button

options button

The options button shows an options page with two tabs: current sighting and saved

sightings:

The map button opens the map dialog.

The button icons can be overridden with custom ones. To do this, create columns with the

name of the button followed by Icon . For example:

map button

Custom button icons

homeIcon

backIcon

nextIcon

saveIcon

indexIcon

optionsIcon

mapIcon

type name bind::ct:footer.mapIcon

select_one animal my_custom_map_icon.svg

◄ ► survey choices settings +

By default, the footer background color is taken from the settings sheet. However, it is

possible to override it on an individual page.

type bind::ct:footer.color bind::ct:footer.colorDark

select_one... #0000ff #000080

◄ ► survey choices settings +

•

•

•

•

•

•

•

color and colorDark

Override the default button color with a custom one. This applies to all buttons.

type bind::ct:footer.buttonColor bind::ct:footer.buttonColorDark

select_one... #00a000 #20f020

◄ ► survey choices settings +

An additional scaling factor to apply to the button size. This is typically useful for

increasing the size of footer buttons. The scaling factor will be capped to allow at least 6

buttons to fit in the footer.

type bind::ct:footer.buttonScale

select_one... 3.5

◄ ► survey choices settings +

buttonColor and buttonColorDark

buttonScale

If yes then the footer is hidden. Default is no .

type name bind::ct:footer.hidden

select_one animal animal no

◄ ► survey choices settings +

A QML fragment to use instead of the built-in footer. See Developer section. For example:

type name bind::ct:footer.qml

integer animal_count qml fragment

◄ ► survey choices settings +

To set the footer to a blue rectangle, replace qml fragment above with the following:

hidden

qml

import QtQuick 2.15

Rectangle {
 color: "blue"
 height: 64

https://wikipedia.org/wiki/QML

Base64 encoded QML (see qml above).

Name of a QML file which exists alongside other project files. This is not supported on

ODK or KoBoToolbox, but can be used in Survey123.

}

qmlBase64

qmlFile

When the user presses the Save button, this triggers the save behavior.

Setting snapLocation to the name of a geopoint question will create a popup to acquire the

GPS location. This feature is only active when wizardMode is enabled.

type name label

geopoint f_location Location

select_one animal f_animal Animal

text f_note Note

◄ ► survey choices settings +

title bind::ct:save.snapLocation

My form f_location

◄ ► survey choices settings +

In this example, the user flow will be:

Save

snapLocation

targets

In the example below, the user will be presented with a popup containing the choices

Restart or Another. After the sighting is saved, a new sighting will be created starting at

the targeted question. All prior question data will be replicated into the new sighting.

This value must be a valid JSON array.

type name label

select_one animal f_animal Animal

select_multiple behavior f_behavior Behavior

text f_note Note

◄ ► survey choices settings +

restart and another are taken from the choices sheet in the saveTargets list name.

list_name name label

saveTarget restart Restart

saveTarget another Another

◄ ► survey choices settings +

Note that question is the name of the targeted question in the survey table. If the question

is not relevant, then this choice will be hidden.

title bind::ct:save.targets

My form
[{ "choice": "restart", "question": "f_animal"}, { "choice": "another", "question":
"f_behavior"}]

◄ ► survey choices settings +

Note that if immersive is set to false, then the target list will automatically contain the

home button. This option will save and return to the Home page without automatically

creating a new sighting.

In the example below, there is a select_one question called f_track with choices start ,

stop and nochange . When the user presses Save, the track timer is adjusted depending on

which choice was selected. The values in updateIntervalSeconds and distanceFilterMeters

are the new track settings.

This value must be a valid JSON array.

type name label

file f_track_file

select_one track_items f_track Configure track

text f_note Note

◄ ► survey choices settings +

list_name name label

track_items start Start

track_items stop Stop

track_items nochange No change

◄ ► survey choices settings +

title bind::ct:save.trackFile bind::ct:save.track

[{ "condition": "selected(${f_track}, 'start')",

track

My form f_track_file "updateIntervalSeconds": 5, "distanceFilterMeters": 10
}, { "condition": "selected(${f_track},'stop')",
"updateIntervalSeconds": 0, "snapTrack": true }]

◄ ► survey choices settings +

condition is an XlsForm expression which activates this option if matched, e.g.

${start_stop}=’start’. Check out the ODK Form Logic documentation.

updateIntervalSeconds is the number of seconds between GPS readings. Set to 0 to disable

the track timer.

distanceFilterMeters is the minimum distance between readings in meters. This is optional

and by default no distance filter is used.

snapTrack causes the system to snapshot all the track points (since prior snap).

If using Survey123 and esriLocationServiceUrl is specified, then the track data will be sent

to the feature service. Otherwise, a track file will be created and added to a file type

question in the form. The question selected must be of type file and should have a

trackFileFormat column specified.

https://docs.getodk.org/form-logic/
http://127.0.0.1:4000/xlsform/reference-manual/2#esrilocationserviceurl

Offline maps are map layers that are installed in CyberTracker. They can be used on the

Map page. With the exception of WMS layers, they do not require a network connection.

An offline map package is a zip file containing one or more layer files. See this sample file.

Note that the layers.json file is optional - by default the system will automatically discover

files with supported extensions. Many map layers require several files with the same base

name, for example shape files require a .shp, .shx, .dbf and .prj file. These should all be in

the base directory of the zip file.

On desktop, a map package can be installed using Install package from the File menu.

On mobile, CyberTracker registers as a handler for zip files. When opening a zip, a prompt

is displayed asking which app to open the file with. Select CyberTracker and the map will

be installed. This is useful, because it is possible to send people a link via email or SMS.

Maps can also be installed directly from the Offline maps page. This can be reached via

Settings or the gear icon on the Map Layers page:

Offline maps

What is an offline map?

Packages

Package installation

http://127.0.0.1:4000/assets/xlsform/offlinemap.zip

CyberTracker will discover and install layers in a zip file automatically. While this is often

acceptable, when there are multiple layers, it is useful to specify the order and opacity of

each. To do this, add a layers.json file to the zip and specify each of the layers:

Note that the Settings page for offline maps also supports re-ordering the layers, sharing

with others and even deleting them:

Offline map packages can be shared to other devices. This shares the entire original

package, not just the selected layer.

Layer order and opacity

[
 {
 "filename": "Gabon.mbtiles",
 "name": "Gabon",
 "active": true,
 "opacity": 1.0
 },
 {
 "filename": "Country.shp",
 "name": "World countries",
 "active": true,
 "opacity": 0.5
 }
]

Sharing

On the Map Layers page, selecting the Zoom to button will zoom to the entire extent of the

layer.

The following layer formats are supported:

ESRI formats: shapefile (shp), tile package (tpk), vector tiles package (vtpk)

ASRP/USRP

CIB1, 5, 10

DTED0, 1, 2

GeoTIFF

HFA

HRE

IMG

JPEG

JPEG 2000

NITF

PNG

RPF

SRTM1, 2

Zoom to layer

Supported formats

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Mosaic Dataset in SQLite (read-only)

MapBox: mbtiles

Google: KML

GeoJSON

Web Map Service is an online layer protocol. While these layers are actually online, they

can be added as layers using the Offline map system. To do this, create a JSON file with

the extension .wms and add it to the package zip file. For example:

•

•

•

•

WMS layers

{
 "layer": "0",
 "service": "https://basemap.nationalmap.gov/arcgis/services/USGSHydroCached/MapServer/WMSServer"
}

https://wikipedia.org/wiki/Web_Map_Service

For geopoint question types, the number of skipped readings before a fix is taken. The

default value is 4. Some GPS devices return old readings before real readings. To

overcome this, setting the fixCount will cause the system to require several readings

before the final location is taken.

type name parameters

geopoint f_location fixCount=4

◄ ► survey choices settings +

When the user presses Save and creates a track file, it is stored in a file field specified in

the settings sheet in the bind::ct:save.trackFile column.

By default the format of the track is zipped geojson, but this can be changed by using the

format parameter of the question itself. Supported values are geojson and kmz (not

supported on Survey123).

Survey123 users should prefer to use a location service - see esriLocationServiceUrl. If a

location service is specified, this question should be removed.

type name appearance parameters

file f_track_file hidden format=kmz

◄ ► survey choices settings +

title bind::ct:save.trackFile

My form f_track_file

◄ ► survey choices settings +

Miscellaneous

fixCount

track file format

http://127.0.0.1:4000/xlsform/reference-manual/2#esrilocationserviceurl

CyberTracker is built on the Qt Framework. The Qt user-interface language is called QML

and it provides a concise way to describe components and layouts. The scripting language

is Javascript.

QML fragments can be added to an XlsForm. This enables a high degree of customization

beyond what is already available. In particular it allows custom widgets and layouts to be

used in data entry.

Install CyberTracker on your desktop computer by following the instructions on the

Download page.

After launching, open the Window menu and select Toggle developer console.

Developers

Introduction

Setup

https://www.qt.io/product/framework
https://en.wikipedia.org/wiki/QML
http://127.0.0.1:4000/xlsform/download

Each question in an XlsForm is given one page in the UI. The page is divided into 3

segments: header, content and footer:

Page layout

Each can host QML and these are specified in the bind::ct:header.qml ,

bind::ct:content.qml and bind::ct:footer.qml columns. Note that you may also use

qmlFile (file alongside project files) or qmlBase64 (base64 encoded QML).

XlsForm question values are identified by their recordUid and fieldUid .

recordUid uniquely identifies the current record. For simple forms there is only record per

sighting, but using repeats and groups, multiple records will be created.

fieldUid uniquely identifies the question within a form. It comes from the name column of

the survey sheet.

Given the following form:

type name label bind::ct:content.qmlFile

text my_field_name My field name test.qml

◄ ► survey choices settings +

And the following test.qml:

recordUid and fieldUid

import QtQuick 2.15

https://xlsform.org/#repeats

The developer console will output something like:

Form values can be changed using a FieldBinding component. This enables change

notifications so that the Label will automatically update when the button is clicked.

Item {
 property string recordUid
 property string fieldUid

 Component.onCompleted: {
 console.log("recordUid = " + recordUid)
 console.log("fieldUid = " + fieldUid)
 }
}

recordUid = 7f1ed933401b43878fee6f0d38c7f92a
fieldUid = my_field_name

Setting form values

import QtQuick 2.15
import QtQuick.Controls 2.15
import CyberTracker 1.0 as C

Item {
 property alias recordUid: fieldBinding.recordUid
 property alias fieldUid: fieldBinding.fieldUid

 C.FieldBinding {
 id: fieldBinding
 }

 Label {
 x: 10
 y: 10
 text: fieldBinding.value
 }

 Button {
 anchors.centerIn: parent
 text: "Set field value"
 onClicked: {
 fieldBinding.setValue("Hello world!")
 }
 }
}

The console window will give an error of the form: Unable to assign [undefined] to QString

when first launched, because fieldBinding.value is initially undefined. This is generally

harmless, but can be removed by checking for undefined:

Label {
 x: 10
 y: 10
 text: fieldBinding.value || ""
}

CyberTracker supports ODK Central, KoBoToolbox and Survey123.

XlsForm extensions support custom columns by using the namespaces value in the settings

sheet. Columns prefixed with bind::ct: are only used by CyberTracker and are ignored

(but preserved) by other tools.

Frequently Asked Questions

Which backends support XlsForm?

Are CyberTracker extensions visible to other tools?

https://getodk.org/
https://kobotoolbox.org/
https://survey123.arcgis.com/

